Adding Active Objects to SPIN

First Steps Towards Program Verification in SPIN

Willem Visser!, Klaus Havelund? and John Penix

! RIACS
2 Recom Technologies

Automated Software Engineering Group
NASA Ames Research Center

Abstract. We adapt the SPIN system to allow more efficient program verification. Specifically, we
add a feature to the language that makes it possible to model check PROMELA systems containing
active objects, i.e. objects that are capable of executing autonomously, and the contents of which can
be accessed via object references.

1 Introduction

Model checking is a popular method for analyzing the correctness of designs. The advantages of
model checking at the design level are two-fold: firstly, finding errors during the design phase
is well known to be extremely cost-effective, and secondly, designs tend to be more abstract than
implementations and as a consequence the state explosion problem that model checking often suffers
from is less acute. However, it is our experience within the Automated Software Engineering group
at NASA Ames', that we often apply model checking posterior, i.e. after the system is built we
extract a model of the system from the source of the implementation, which we then use for model
checking [HLP98,HS99]. In both the design verification and the “after-the-fact” verification the
problem exists that the model of the system is often in a different notation than the implementation
of the system. We believe this gap should be closed.

The approach we suggest for doing this is to add to a model checker the capability to do program
verification, i.e. enhance the notation for describing the input to the model checker with common
programming structures and change the checker so that it can handle these new constructs during
model checking. This would allow us to have one notation for both design and program verification.
We picked the SPIN model checker [Hol97] to try out the idea of program verification, primarily since
its input notation, PROMELA, already contains many concepts available in modern programming
languages, e.g. records, arrays, loops, conditional branching, shared memory, processes etc.

In the rest of this paper, we will only focus on using program verification principles within
the framework of after-the-fact verification, since this is what our group is currently concerned
with. However, we believe the benefits of enhancing PROMELA with programming constructs
would allow other avenues for research within the SPIN community. For example, one can imagine
developers of software systems, doing a high-level design in PROMELA then model check it, after
which they refine it more and more, after each stage checking the model, until finally producing
executable code in a commercial programming language. At some stage during the refinement

! nttp://ase.arc.nasa.gov

process the size of the model might become intractable when doing exhaustive verification, at
which point the model checker can be considered a debugger, i.e. it looks for errors but cannot
guarantee to find them (by for example running in the super-trace mode). Of course, given a formal
semantics of the extended PROMELA one can also do refinement proofs between the different levels
of implementation.

Currently, we have two major program verification exercises within our group: model checking
a real-time operating system of about 3000 lines of C++ code (called DEOS) and doing general
JAVA verification with a home-grown tool called JAVA PathFinder (JPF) [HP99]. In both these
projects we translate the original code to PROMELA and use SPIN for model checking: in the
DEOS verification we do it by hand and the JPF tool does an automatic translation. In both cases
the translation is non-trivial since PROMELA does not support objects directly. It was therefore
obvious that we require support for manipulating objects within PROMELA. Furthermore, JAVA
in fact supports active objects, i.e. objects that can have their own thread of control. Active objects
are interesting constructs, since they unify the two seemingly different areas of concurrent and
object-oriented programming. That is, an active object has a thread of control in addition to public
methods/data. In case there is no thread of control, we have a passive object. In case there is a
thread of control but no public methods/data, we have a process.

This paper describes the experiment of adding the capability to the SPIN system to handle
active objects. We will show how we made minimal changes to SPIN in order to both model check
and simulate programs with active objects. Throughout we will try and quantify how difficult the
changes were, and what insight was required to make them. It is our hope that such a description
might be useful to others thinking of making changes to PROMELA /SPIN. We evaluate the active
objects addition to SPIN by comparing the translation effort and verification efficiency between
the old translations used for DEOS and JPF and the new translations to the system with active
objects.

It has recently come to our attention that at least one other group is working on extending
SPIN to allow for program verification [I0s99]. Their extension, dSPIN, essentially adds the notion
of C-style pointers to PROMELA.

The structure of the rest of the paper is as follows. In section 2 we show how the translation of
objects to standard PROMELA is achieved at the moment, and in section 3 we show the changes
we made to the system to handle active objects. In section 4 we evaluate the work by comparing it
to the standard translation used for the DEOS and JPF projects and in section 5 we discuss future
work.

2 Background

Translation tools from programming languages to PROMELA, to allow model checking with SPIN,
have recently gained the interest of the research community. The JAVA PathFinder [HP99] devel-
oped at NASA Ames translates from JAVA to PROMELA. Another JAVA to PROMELA transla-
tor is described in [IDS98], whereas in [Cat98] a concurrent extension of C++ is considered (called
sC++, and in fact is extending C++ with active objects). In addition we are also translating C++
code to PROMELA within the DEOS project, but unlike the above mentioned tools, we do the
translation by hand (we are however trying to stay as close as possible to the original code in our
translation). In this section we only focus on how objects and threads are translated to PROMELA,
since this is the capabilities we want to add to PROMELA in the form of active objects. Further-

more, since the synchronization between active objects in sC++ is very limited (all method calls
to an object are synchronized), we will only discuss the more general translation used within the
two JAVA tools and the DEOS project (these three translations are very similar). We will therefore
focus on objects (of a specific class) as defined in C++ and JAVA, and threads as defined in JAVA.
We will not discuss these concepts in any great detail, but will rather focus on the general concepts
of objects and threads.

For the translation of JAVA and C++ classes the general idea is the following: the data part
of a class is modeled by a record and the methods of the class by macro definitions. Since for
each object instantiation of the class there will be allocated a new data part, we keep track of the
different objects’ data members in an array of records. For each class an index variable is used to
keep track of the next free slot in the array (initially this index is 0) and its value is used as an
object pointer for the next object instantiation for this class. An obvious drawback of using arrays
to keep track of object instantiations is that in PROMELA the size of an array is fixed and hence,
dynamic object creation in its full generality is not possible.

class Spin {

public int concurrency; #define MAX_OBJECTS 3
public Spin(int con) { typedef Spin_Class {
concurrency = con; int concurrency;
Y };
} Spin_Class Spin_POOL[MAX_OBJECTS];

byte Spin_Index = 0;
class ActiveSpin extends Spin {

public int objects; typedef ActiveSpin_Class {
int concurrency;
public ActiveSpin(int con, int objects;
int obj) { };
super(con); ActiveSpin_Class ActiveSpin_POOL[MAX_OBJECTS];
objects = obj; byte ActiveSpin_Index = 0;
}
}

Fig. 1. PROMELA Object Arrays for two JAVA classes: JAVA (left) and PROMELA (right).

In Figure 1 the object arrays for two simple JAVA classes that have no methods, but show
inheritance, are given in PROMELA. For each class we create an array of records for the data of
the class (of maximum size 3). Note how we include the concurrency field from class Spin in the
definition of the data for class ActiveSpin, due to the inheritance between the classes.

A particular object is referenced by an object reference that indicates not only what the class
of the object is (i.e. in which array to look up the data for the object), but also which instance
it is (i.e. at what index in the array is the object’s data stored). There are a number of different
approaches to encode this information in an object reference. In DEOS we used a simple scheme
where each object reference is a record with two fields: one for the class of the object and one for
the index to the specific instance. Both the class and index field would be set when a new object is
instantiated. For example the constructors for the two JAVA classes of Figure 1 would be translated
as follows (inline is a macro expansion):

#define Spin
#define ActiveSpin 1

typedef ObjRef {
byte CLASS;
byte INDEX;

}

inline Spin_NEW(this,con) {
this.CLASS = Spin;
this.INDEX = Spin_Index;
Spin_POOL[Spin_Index].concurrency = con;
Spin_Index++;

}

inline ActiveSpin_NEW(this,con,obj) {
this.CLASS = ActiveSpin;
this.INDEX = ActiveSpin_Index;
ActiveSpin_POOL[ActiveSpin_Index].concurrency = con;
ActiveSpin_POOL[ActiveSpin_Index].objects = obj;
ActiveSpin_Index++;

When an object is instantiated, in C++ or JAVA, with a call x = new Spin(1) we translate
it to the following PROMELA code: Spin NEW(x,1) where x is of type ObjRef. Inheritance how-
ever allows polymorphism between the objects of a class and its subclasses and this is where the
translations become more cumbersome. If, for example, the field concurrency of an object of class
Spin is accessed, we don’t always know whether the field is in the array for Spin or ActiveSpin.
In DEOS we therefore translate the following code y = a.concurrency (where y is an integer and
a is declared as an object of class Spin) as follows:
if
::a.CLASS == Spin ->y

::a.CLASS == ActiveSpin -> y
fi;

Spin_POOL[a.INDEX] .concurrency
ActiveSpin_POOL[a.INDEX].concurrency

Similar conditional code is used when assigning a value to the field of an object where polymor-
phism might be present. We found this way of handling polymorphism in the DEOS translation
satisfactory, since we did the translation by hand and furthermore inheritance is only used in one
part of the system (in the definition of doubly linked lists, which forms the basis of all the queue ma-
nipulations within the operating system). The translation scheme does however cause a serious code
blow-up in some places: for example, the innocuous looking C++ code this->previous->next =
otherList->next translates to 32 lines of PROMELA, since no type information is available and
each of the references could be of one of two types.

In the JPF tool a slightly different approach was taken: the class and index fields from the
object reference were combined into one field of type int. Creating this combined reference involves
using a formula with a specific offset for where the class and index information can be distinguished:
specifically a reference to a new object of class ¢ and index ¢ is created by ¢ x 100+ . Retrieving the
index and class of an object is therefore simply div and mod operations: respectively getclass(x)
= x div 100 and getindex(x) = x mod 100. This approach of encoding the object reference into
one integer field was found to be more convenient when doing automatic translations than the
CLASS field approach used within DEQOS. However, a code blow-up is still present and in fact, in an
early version of the JPF tool this code blow-up caused the generated C code (from the PROMELA
generated from a 1000 line JAVA program) to be so large that it caused the gcc compiler to fail
and hence made verification impossible.

3 First Steps to Adding Active Objects to PROMELA /SPIN

It should be said right up-front that the change to PROMELA/SPIN was very minor and took
only about one man-week to do. It is not a general solution for handling objects in SPIN, but was
rather intended to show proof-of-concept.

Our basic motivation was the following: how can we reduce the effort involved for translating
objects to PROMELA with minimum changes to the current system. In early attempts to translate
JAVA /C++ we modeled objects as PROMELA processes, but this didn’t work. The data part of a
class translated to variables declared within a process, and, an object instantiation translated to a
process being started. However, what did not work was the translation of method calls. One could
model method calls as synchronous messages to the process representing an object, but in JAVA,
for instance, at any point in time more than one thread can call the same object’s method if the
call is not synchronized. This would not be possible when translating method calls as messages and
method bodies as code fragments inside a process. Even if there is only one thread of control in a
system, as is the case in DEOS, then this translation approach fails when one object calls a method
in another object that then calls a method in the first object before returning: this would cause
a deadlock. What we learned from this is that processes and objects are a perfect match when
considering data, but not for calling methods. Hence, if we could find a way to keep method calls
as inline macro expansions within the body of the calling process, but somehow relate the data
within the methods to variables within another process (one that contains the object’s data) then
we would have a satisfactory solution for the translation of objects. This last observation motivated
the change we required in the SPIN system: a mechanism to reference variables declared within
another process. To illustrate how this would work we show in Figure 2 how the two JAVA classes
defined in Figure 1 would be translated to a SPIN system that allows access of variables inside
another process. The notation proc~var is used to access variable var in process proc.

#define passive 0 inline Spin_NEW(this,con) {
this“concurrency = con;
proctype Spin_Class() { T
int concurrency;
inline ActiveSpin_NEW(this,con,obj) {

passive this“concurrency = con;
}; this~objects = obj;
¥
proctype ActiveSpin_Class() { init {
int concurrency; Spin_Class spin_obj;
int objects; ActiveSpin_Class activespin_obj;
passive spin_obj = run Spin_Class();
}; Spin_NEW(spin_obj,1);
activespin_obj = run ActiveSpin_Class();
ActiveSpin_NEW(activespin_obj,1,1);
}

Fig. 2. PROMELA with Access to the Variables of a Process.

With the use of the constant passive in Figure 2 we give a hint at another interesting side-effect
of this form of translation from objects to processes, namely that both active and passive objects
can be translated trivially. The two classes in Figure 2 are both passive, i.e. they have no body
to execute, which is modeled by them having the unexecutable statement 0 as their body. The
0 body is required to ensure the process does not terminate. When translating an active object
one would replace the 0 with the body of the active object. For example, we show below how the
ActiveSpin Class would look if it had an endless loop as a body. Note how a new method is now
required to start the execution of the body, to ensure that the body is not executed before it is
correctly initialized.

proctype ActiveSpin_Class() {
int concurrency;
int objects;
bool STARTED = 0;

STARTED;
do
HED R S
od;

}

inline ActiveSpin_Start(this) {
this“STARTED = 1;
T

In our extended system one can therefore now declare object variables (references) that are of the
type of an already defined process. The variables of an object (process) can be of any PROMELA
type, including other objects. None of the functionality of standard PROMELA is affected, hence
non-object variables within a process can be used as before. Object variables can be passed over
channels and as parameters to processes, since an object variable is nothing more than a byte, with
extra type information (i.e. which type of process it is pointing to).

3.1 Implementation Details

In order to understand how we implemented the access to the variables of a process, one needs
to understand how certain parts of the SPIN model checker works. Specifically, how does SPIN
generate the nezt state from the current system state during model checking. The PROMELA
compiler generates C code that gets compiled by a C compiler (gcc in our case), where after the
generated executable file is executed to do the model checking. This means that every PROMELA
statement is essentially translated to a fragment of C code that, when executed, will change the
current state of the system, i.e. generate the next state for model checking. In order for each fragment
of C code to execute correctly it must be viewed within a dedicated run-time environment, which
we will refer to as the PROMELA run-time environment. In fact, most of the PROMELA run-time
environment is just the C environment; for example addition in PROMELA translates to addition
in C. Of course, in areas, where no equivalent C code exists, for example communication statements
in PROMELA, the PROMELA run-time environment is much more elaborate. For the purpose of
this paper we will only focus on the memory model of the PROMELA run-time environment, and
only in so far as the parts that concern our goal of accessing variables of a process.

In the memory model of the PROMELA run-time environment a record data-structure (called
struct in C) is used to keep track of the variables of a process. In the current system state the

this reference always refers to the structure of the current process executing. Global variables are
stored in a special structure called State and can be accessed through a reference called now. As
an example, the record structure for process Spin_Class above would be:

typedef struct PO { /* Spin_Class */
unsigned _pid : 8; /* 0..255 */
unsigned _t : 3; /* proctype */
unsigned _p : B; /* state */
int concurrency;

} PO;

Referencing the value of variable concurrency would require execution of the following C statement:
((PO *)this)->concurrency. This would assume however that the current reference of the variable
occurs within the process Spin_Class, since the this pointer is assigned the reference to the data
of the currently executing process within SPIN. In other words when the process was instantiated
with the run statement a new block of memory containing its data was created and every time
this process is scheduled to execute the this pointer points to the block of memory. Notice how
the block of memory the this pointer points to is cast to the correct structure type so that all the
fields (i.e. variables) of the process can be accessed.

In order to generate code for the statements that refer to the variables within another process
we need to know where the block of memory for the process resides and then access the correct
fields (variables) within this block. Since it was clear that within the SPIN source it was possible
to find out where the block of memory for a specific process starts (how else would the value of
the this pointer be known!), it was just a question of finding out how it was done. Looking up
all assignments to the this pointer within pan.c (the main code that gets executed for the SPIN
model checker) turned up a macro called pptr (x) that would return a pointer to the memory block
for a process with instantiation number (x). The instantiation number, or process id (_pid), is
returned by the run call and is therefore available during run-time. The only other information we
require is the record name used for a process’ memory block, since it is required to cast the block
of memory into the correct structure to allow a field (variable) to be accessed. This information
is available statically from the type declaration of the object. Furthermore, these structures have
a fixed naming scheme: they are referred to as Pn where n indicates the number of processes that
have been parsed during compilation (i.e. the first process in the file will have structure name
PO, the next process P1 etc.). In fact, there is even a function in the SPIN compiler that would
return the value of n when given the name of a process (proctype) as a character string (called
fproc(char *s)).

We added one field to describe a Symbol within the PROMELA compiler to indicate the name
of the process an object variable refers to (called procname and declared as a character string).
When an object variable is declared we can assign this field the name of the proctype it refers
to. For example in the declaration Spin_Class spin_obj; from Figure 2 the procname field for
spin_obj will be assigned Spin_Class. If we assume Spin_Class was the first process to be declared
within a PROMELA file then the code for the assignment spin_obj~concurrency = 1; (where
spin_obj = run Spin_Class()) within init (which we assume is the third process in the file),
would be:

((PO *)pptr(((P2 *)this)->spin_obj))->concurrency = 1;

Since the assignment is within the currently executing process we first need to get the value of
the variable spin_obj within the memory block pointed to by this (note the cast to P2 to ensure

the spin_obj field is accessible); next we need to find the block of memory for the process that
spin_obj points to by using the pptr call and lastly we need to ensure again that the memory is
cast into the correct structure namely that for Spin_Class() which is PO.

Polymorphism is also easily handled by the translation. Let us consider the record structure
containing the data variables for ActiveSpin Class that extends Spin_class:

typedef struct P1 { /* ActiveSpin_Class */
unsigned _pid : 8; /* 0..255 */
unsigned _t : 3; /* proctype */
unsigned _p : B; /* state */
int concurrency;
int objects;

} P1;

Now if we have an object reference of type Spin_Class then the actual object might be of the type
of the subclass ActiveSpin Class, but one can notice that the data member that is shared between
the two classes is stored in the same location in the record structure for both processes. This means
when the following reference is encountered obj~concurrency and the type of obj is Spin Class
then the memory block, obj points to, can be casted to P0 regardless of whether the actual memory
block has the structure of P1 (i.e. was allocated with a run ActiveSpin Class() call), and the
correct value of the concurrency variable will be found. Of course, casting the memory block to
type PO and then to try accessing the objects variable will not be allowed by the C compiler, but
this is not allowed in object oriented languages anyway (i.e. one cannot reference variables of the
subclass when the object reference has the superclass’ type?).

3.2 Observations

From having the initial idea to having a system going that could handle a very simple verification
example, took no more than one day of work. An immediate need however was to be able to not
only do verification, but also to simulate the extended PROMELA programs. Unfortunately SPIN
compiles and executes C code for verification, but for simulation it interprets different code. This
meant one also needed to extend the simulation code. As it turned out, this was in fact rather easy
and involved very few changes in the functions that get and set the values of a variable. However,
arriving at the precise places to make the changes required understanding the whole simulation
engine. Making changes to the simulation engine took in all about 2 days.

On the verification side the most time was spent extending the implementation beyond the initial
phase so that it could be compatible with the different features of SPIN. For example allowing arrays
of objects and indexing arrays with the value of a field of an object etc. This took approximately
3 days, but was interleaved with the translation of the PROMELA version of the DEOS model
to extended PROMELA. We believed if a truly large system like DEOS can be handled by the
extended SPIN system, then it would be a sign that the system was indeed useful.

One interesting experience was when we attempted to do a verification of a temporal property
for the first time with the extended system; it didn’t work! The problem was that when doing
verification with a never claim all instantiation numbers move up one, since the process for the
never claim is assigned the first instantiation number (0). In fact this is indicated by a constant

? In both JAVA and C++ it can however be achieved by type casting, but this would not be a problem since the
cast would be explicit at compile time.

value BASE that becomes 1 when doing temporal verification and is 0 otherwise. Hence when calling
pptr(x) it should really be pptr (BASE+x). We learned this lesson the hard way.

We took an extremely conservative view of the effect object references would have on the use
of partial order rules [HP94] within SPIN, by viewing all object manipulations as global references.
This means all statements that contain object references will be considered visible and hence will be
interleaved with all other visible transitions during verification. Also note that manipulating “local”
variables within an active object must be considered global references now, since these variables
might be accessed from outside the object (by calling methods of the object).

4 Impact on DEOS and JPF

Adapting the JPF tool to work with the extended SPIN system is still in progress, hence we cannot
yet determine the impact of the new system. We have however done some experiments where we
translated from JAVA to PROMELA and then hand-translated the PROMELA to the extended
PROMELA. We relate here the results achieved by running the JPF tool versus the extended SPIN
system on the producer-consumer example from [HP99]. Since JPF must estimate the size of the
arrays required to store object data, and these estimates are always conservative, the extended
SPIN system used less memory and time (due to hashing being slower on longer state vectors).
The number of states generated by both systems were about the same. When we optimized the
PROMELA code produced by JPF to have the optimal array sizes the two systems were within
5% of each other with respect to time and memory usage, with JPF showing better performance.
However, when we changed the system configuration by adding an extra consumer (active) object,
JPF outperformed the extended SPIN system significantly, most notably the number of states
was different by more than 100K . This is due to our conservative treatment of partial order rules
(section 3.2) and the fact that the consumer object is active and therefore introduces many more
possible interleavings.

The impact of the extended SPIN system on the DEOS verification was much more apparent.
For example, one method for merging two lists, translated from 7 lines of C++ code to 193 lines of
standard PROMELA, but had an almost one-to-one mapping with the C++ code in translation to
extended PROMELA (see Figure 3). The reason why the code blow-up was so much for the standard
PROMELA translation was that there is polymorphism present here: each of the nodes in the list
could be of the superclass ThreadList (with data members, previous and next) or the subclass
ThreadListNode that extends the superclass with one more data member (called itsParent). Each
variable reference therefore required an if construct to determine the class of the variable before
looking up the value in the correct array (as described in section 2).

The translation effort to get from the original C++ for DEOS to extended PROMELA was
negligible. Furthermore, since so many control states were removed in a part of the code that
was heavily used, the amount of states generated between the old and new model of DEOS in
PROMELA was very significant. In fact, the old model of DEOS was intractable (i.e. SPIN ran
out of memory on a 512M machine) for small configurations of the system, i.e. where the DEOS
operating system only had to schedule 2 threads. The new extended PROMELA model however,
easily completed (i.e. did not run out of memory) with 3 threads to schedule.

We did one more experiment to determine the amount of overhead that is required to check
extended PROMELA models. We created a version of DEOS where we removed the inheritance
in the link list code, by just merging the sub- and superclass into one class with all the combined

void ThreadList::mergeList(ThreadList &otherList) { inline ThreadList_mergeList(this,otherList) {

if (! otherList.isEmpty()) { ThreadList_isEmpty(isEmpty,otherList)
previous->next = otherList.next; if ::!isEmpty ->
otherList.next->previous = previous; this“previous™next = otherList™next;
previous = otherList.previous; otherList"next”previous = this“previous;
otherList.previous->next = this; this previous = otherList previous;
otherList.next = &otherList; otherList”previous™next = this;
otherList.previous = &otherList; otherList“next = otherList;

} otherList“previous = otherList;

} ::else
fi;
}

Fig. 3. Code for merging two lists: C++ (left) extended PROMELA (right)

fields and methods. Hence, we now had a PROMELA model from which we can translate to ex-
tended PROMELA without removing any control states. Of course, the number of states generated
now were (almost3) the same for both systems. The extended system was however 4 times slower.
One reason for the slower speed was that SPIN spent time trying to execute statements in passive
processes, which had no executable statements. We changed the SPIN scheduler to ignore passive
processes during scheduling and that made the extended system only 2 times slower. This is ac-
ceptable, since the DEOS model is highly object oriented and the extra time is obviously going into
doing the accesses of other processes’ variables (i.e. the pptr calls).

In summary, the effect of the extended SPIN system is that it reduces the size of the state space
when polymorphism is present, but it is slower than a system that just encodes objects in standard
SPIN. Arguably, extended SPIN’s main contribution is however the amount of effort that is saved
in translating object oriented software in order for it to be model checked by SPIN.

5 Conclusion and Future Work

We illustrated how a small change to PROMELA can allow easier modeling of systems written in
an object oriented language. Specifically, we showed that by allowing access to the local variables
of a process from outside of the process one can easily model objects in PROMELA. We gave some
intuition of how we came up with the idea and also showed that one can do verification of the
extended PROMELA models by reusing some functions already available inside the SPIN code.
Furthermore, we showed that the change we made to PROMELA, also allows one to model active
objects in PROMELA. Active objects unify the concepts of concurrency and objects and therefore
we believe it is important to be able to handle active objects in PROMELA.

Since objects are essentially modeled by an extension of processes in our approach, and processes
can be created dynamically in SPIN, we get dynamic object creation for free (so to speak). However,
one major drawback of our approach is that we cannot handle object deletion efficiently. Although,
SPIN allows processes to terminate, the space in the state vector occupied by the processes’ data
variables, is not reclaimed. Therefore, if many objects are created and deleted in a program then
the state vector will grow quickly and essentially make verification impossible (due to memory
problems). A very interesting avenue for further research is therefore how to implement a form of
garbage collection within SPIN.

8 The difference was less than 1%, and is due to the slightly different notation used between the two PROMELA
designs.

Partial order rules that reduce the number of interleavings of statements in concurrently exe-
cuting processes, is often essential to allow exhaustive verification within SPIN [HP94]. These rules
use a dependency relation between the different statements to determine when reductions can be
achieved. This dependency relation is determined statically and is very weak, in the sense that it
considers certain statements to be dependent when they really are not. For example, all statements
that reference global variables are considered dependent on each other (also called wvisible). Visible
statements will always be interleaved. Since we consider all object references to be global references,
i.e. equivalent to updating or reading from a global variable, all object references are visible. Our
extended SPIN system is therefore in need of a more advanced dependency analysis technique (so
to is the current version of SPIN we believe). Sadly, of course, we have essentially introduced the
notion of a pointer, and therefore aliasing, with our extension of SPIN and it is well known that
alias analysis greatly complicates dependency calculations [WL95]. This would however still be an
interesting avenue for research, since traditional dependency analysis is often focussed on com-
piler optimizations and performance issues (for example how to parallelize a sequential program),
whereas here we are interested in reducing the state space during model checking.

Although the extended SPIN system allows us to model check object oriented programs more
efficiently, by essentially reducing the translation effort to PROMELA, we would like to enhance
the system even further so that we can also define and access methods in a more straight-forward
way.

References

[Cat98] T. Cattel. Modeling and Verification of sC++ Applications. In Proceedings of TACAS98: Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 1384 of LNCS, LISBON, April 1998.

[HLP98] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft Controller using SPIN. In
Proceedings of the Fourth Workshop on the SPIN Verification System, Paris, November 1998.

[Hol97] G.J. Holzmann. The Model Checker Spin. IEEE Trans. on Software Engineering, 23(5):279-295, May 1997.
Special issue on Formal Methods in Software Practice.

[HP94] G.J. Holzmann and Doron Peled. An Improvement in Formal Verification. In Proc. FORTEY/, Berne,
Switzerland, October 1994.

[HP99] K. Havelund and T. Pressburger. Model Checking JAVA Programs Using JAVA PathFinder,
1999. To appear in Special Issue of Software Tools for Technology Transfer. Copy available from
havelund@ptolemy.arc.nasa.gov.

[HS99] K. Havelund and J. Skakkebak. Practical Application of Model Checking in Software Verification, 1999.
Submitted for publication. Copy available from havelund@ptolemy.arc.nasa.gov.

[IDS98] R. Iosif, C. Demartini, and R. Sisto. Modeling and Validation of JAVA Multithreaded Applications using
SPIN. In Proceedings of the Fourth Workshop on the SPIN Verification System, Paris, November 1998.

[f0os99] R. Iosif. Personal Communication. iosif@athena.polito.it, March 1999. http://www.dai-arc.polito.it/dai-
arc/auto/tools/tool7.shtml.

[WL95] R. Wilson and M. Lam. Efficient Context-Sensitive Pointer Analysis for C Programs. In Proceedings of the
ACM SIGPLAN’95 Conference on Programming Language Design and Implementation., June 1995.

